SANT GADGE BABA AMRAVATI UNIVERSITY , AMRAVATI CURRICULUM AS PER NEP-2020 FACULTY OF SCIENCE AND TECHNOLOGY

Three Years Degree Course SUBJECT Major: STATISTICS B.Sc. FIRST YEAR SEMESTER-I

Program outcomes

PO1:DisciplinaryKnowledge:

Demonstrate comprehensive knowledge of the disciplines that form a part of agraduate programme. Execute strong theoretical and practical understanding generated from the specific graduate programme in the area of work.

PO2: Critical Thinking and Problem solving:

Exhibit the skills of analysis, inference, interpretation and problem-solving by observing the situation closely and design the solutions.

PO3: Social competence:

Display the understanding, behavioural skills needed for successful social adaptation, workin groups, exhibits thoughts and ideas effectively in writing and orally.

PO4: Research-related skills and Scientific temper:

Develop the working knowledge and applications of instrumentation and laboratory techniques. Able to apply skills to design and conduct independent experiments, interpret, establish hypothesis and inquisitiveness towards research

PO5: Personal and professional competence:

Performing dependently and also collaboratively as a part of team to meet defined objectives and carry out work across interdisciplinary fields. Execute inter personal relationships, self-motivation and adaptability skills and commit to professional ethics

PO6: Effective Citizenship and Ethics:

Demonstrate empathetic social concern and equity centred national development ,and ability to act with an informed awareness of moral and ethical issues and commit to professional ethics and responsibility.

PO7 Environment and Sustainability:

Understand the impact of the scientific solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development

PO8: Self-directed and Life-long learning:

Acquire the ability to engage in independent and life-long learning in the broadest context of socio-technological changes.

Program Specific Outcomes:

At the end of the program, students are able to:

- 1. Understand the elementary techniques of data analysis such as, graphical and numerical.
- 2. Get the knowledge of different concepts, principles, methodologies and tools (skills) of Statistics.

- 3. Collect, represent graphically, analyze and interpret data /information by using appropriate Statistical tools.
- 4. Identify and solve a wide range of problems in real life /industry related to Statistics.
- Apply various measures of central tendency and dispersion and hence enable them to infer about the nature and characteristics of a particular data set.
- 6. Understand the basic concepts of probability.
- 7. Understand the concept of random variable, univariate probability distribution, expectation and moments of probability distribution.
- 8. Understand bivariate probability distributions and their applications in real life.
- 9. Summarize, analyze and interpret data through various techniques learnt by manual calculations as well as by using MS-Excel.

B.Sc. First Year Semester I Major / Minor - Statistics

Vertical	Vertical	Typeof	Course	Course	Credits	Workload	Max
No.	Name	Corse	Code	name		Perweek	Marks
a	Major /	Theory-	1320101	Descriptive	2	2	30
	Minor	1		Statistics			

	100 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Course	1.To know the importance of Statistics in various field							
Objectives	2.To learn the basic statistical methods							
	3.To understand meaning of data and their types							
Course	Students will be able to-							
Outcomes	1. Identify the appropriate Scale of measurement for a particular characteristic under study.							
	2. Get the knowledge of various statistical organizations working in Ir	ndia						
	3. Calculate and describe data through measures of central tendency dispersion.							
	4. Interpret the utilization of measures of central tendency and							
	dispersion to compare group results.							
	dispersion to compare group results.							
Units	Contents	Workload Allotted						
I	Meaning of statistics as Science, its importance and limitations. Scope of Statistics: In the field of Industry, Biological Sciences, Medical Sciences, Agricultural Sciences, Management Sciences, Educationand Psychology. Statistical Organizations in India and their functions: CSO, NSSO, IIPS, ISI.	8 hrs						
II	Types of Data: Qualitative and Quantitative data, nominal and ordinal data, discrete and continuous data, frequency and non-frequency data. Primary and Secondary Data and its major sources. Types of Scales: Nominal, ordinal, ratio and interval. Classification: Rules of Classification and its types.	7 hrs						
III	Frequency Distribution: Discrete and continuous frequency distribution, cumulative frequency distribution, ogive curves. Central Tendency: It's concept and its measures (A.M., weightedA.M., median, mode) with its merits and demerits. Properties of A.M., relation between mean, mode and median, Partition values: Quartiles, deciles and percentiles	8 hrs						
IV	Measures of dispersion: Range, Quartile deviation, mean deviation and its coefficients. Standard deviation, root mean square deviation, variance and various formulae for calculating variance, C.V. Moments: Raw moments and central moments with its relationship, effect of change of origin and scale on moments	7 hrs						

- Brase C.H., Brace C.P (2016). Understandable Statistics, Concepts and Methods, 12th Edition, 1. Cengage Learning.
- 2.
- Freedman D., Pisani R., Purves R. (2007). Statistics, 4thEdition, W.W. Nortonand Company. Freund J.E. (1977) .Modern Elementary Statistics .4th Edition, Prentice Hall of India Private 3. Limited, NewDelhi.
- Goon A.M., Gupta, M.K. and Dasgupta, B. (1983). Fundamentals of Statistics, Vol. 1. 6th Revised 4. Edition, The World Press Pvt. Ltd., Calcutta.
- Gupta S. C. and Kapoor, V. K. (1983). Fundamentals of Mathematical Statistics. 8th Edition. 5. Sultan Chand and Sons Publishers, New Delhi.
- Gupta S. C. and Kapoor, V. K. (1997) .Fundamentals of Applied Statistics, 3rd Edition, Sultan 6. Chand and Sons Publishers, New Delhi.
- Heumann C., Schomaker, M., Shalabh (2016). Introduction to Statistics and Data Analysis. 1st 7. Edition, Springer, Germany.
- Moore D. S., Notz W. I., Fligner M. A. (2013). The Basic Practice of Statistics, 6th Edition. Ruth 8. Baruth.
- Utts J.M., Heckard R. F. (2010). Mind On Statistics, 4th Edition, Richard Stratton Publisher. 9.
- Zealure C. H. (1998). Fundamentals of Descriptive Statistics. 1st Edition, Routledge, 10. U.K.(TaylorandFrancisGroup).

Vertical	Vertical	Type of	Course	Course	Credits	Work load	Max	
No.	Name	Corse	Code	Name	Cicuits	Per week	Marks	
a	Major /	Practical-	13201P1	Practicals	02	04	25	
u	Minor	1	1320111	based on	02		25	
		_		1320101				
Course	At the en	nd of the cou	rse students	s are able to	I			
Outcomes	1.	Use	various grap	phical and dia	agrammati	c techniques	s to repre	esent
	statistica	al data and ir	iterpret.					
		-	1	stribution and		0 1		
		•		to discrete var			the result	S.
	4. (Compute var	rious measui	res of central t	tendency,	dispersion.		
Units	Conten	ts					Workloa	ad
							Allotted	l
		ntation of da					4 hrs	per
				ean, median a	and mode	for	week	
		ped frequence			, ,	C		
				ean, median a	ind mode	for		
	groupe	d frequency	distribution	S.				
				values as c	quartiles	deciles and		
	_	entiles for un	~ 1					
				values as q	uartiles,	deciles and		
		entiles for gr			1	. * 1		
				n deviation	and quai	rtile		
		on with its c		iation and co	officient o	, f		
		on for groupe		iation and co	emcient c)1		
				ation and co	efficient c	of		ļ
		on for ungro		andi and co		, 1		
				moments (up	to third or	der)		
	10. Con	nputation of	covariance	between two	variables	/		

Vertical	Vertical	Type	Course	Coursena	Credit	Workload	Max
No.	Name	of	Code	me	S	Perweek	Marks
		Corse					
С	Generic/	Theory-1	13201G1	Statistics in	02	02	30
	open			social and			
	elective			behavioral			
				Sciences			
				(Useful for			
				competitive			
				examination)			

Course Objectives	The objective of this course is to understand basic knowledge of statistics that will be useful to apply in competitive Exams.					
Course Outcomes	At the end of the course, students are able to					
	1. Identify the appropriate scale of measurement for characteristic under study.	a particular				
	2. Represent data using appropriate diagram/graph.					
	3. Calculate and describe data through various frequency distribution	1				
	4. After completing of the course student are prepared for basic competitive examination.	knowledge of				
Units	Contents	Workload Allotted				
I	Meaning of statistics as Science, its importance and limitations. Scope of Statistics: In the field of Industry, Biological Sciences, Medical Sciences, Agricultural Sciences, Management Sciences, Education and Psychology.	8 hrs				
II	Statistical Organizations in India and their functions :CSO, NSSO, IIPS, ISI. Types of Data: Qualitative and Quantitative data, nominal and ordinal data, discrete and continuous data, frequency and non-Frequency data.	7 hrs				
III	Primary and Secondary Data and its major sources, Time series data, cross sectional data, Classification: Rules Of Classification and its types. Tabulation: Meaning of Tabulation & its types, construction of tables with one or more factors	8 hrs				
IV	Frequency Distribution: Discrete and continuous frequency distribution, cumulative frequency distribution, Ogive curves. Central Tendancy: It's concept and its measures (A.M., weighted A.M., median, mode, G.M., H.M.) with its merits and demerits.	7 hrs				

- 1.Goon A.M., Gupta,M.K. and Dasgupta,B. (1983). Fundamentals of Statistics, Vol.1. 6th Revised Edition, The World Press Pvt. Ltd.,Calcutta.
- 2. Gupta S. C. and Kapoor, V. K. (1983). Fundamentals of Mathematical Statistics. 8th Edition, Sultan Chand and Sons Publishers,NewDelhi.
- 3. Gupta S. C. and Kapoor, V. K. (1997) .Fundamentals of Applied Statistics, 3rd Edition, Sultan Chand and Sons Publishers, New Delhi.

4. Heumann C., Schomaker, M., Shalabh (2016). Introduction to Statistics and Data Analysis. 1st Edition, Springer, Germany.

Vertical No.	Vertical Name	Type of Corse	Course Code	Course name	Credits	Workload Perweek	Max Marks
С	Generic/	Theory-2	13201G2	Statistics for	02	02	30
	Open			competitive			
	elective			examination			

Course Objectives	The objective of this course is to make aware the students basic measures of central tendencies and dispersion and to understand basic concept of probability which will be useful for Staff Selection Commission Combined Graduate level examination						
Course	At the end of the course students are able to						
Outcomes	1. Calculate and describe data through measures of centra tendency and dispersion.						
	2. Compute the variability between series through their measures.						
	3. Understand basic concept of probability						
	4. At the end of the course student will able to acquire basic						
	knowledge of the staff selection commission combined						
	graduate level exam.						
Units	Contents	Workload					
		Allotted					
I	Properties of A.M (only formula and numerical problems)., relation between mean, mode and median, relation between A.M., H.M., G.M. Partition values: Quartiles, deciles and percentiles. Simple numerical problems	8 hrs					
II	Range, Quartile deviation, mean deviation and its coefficients. Standard deviation, root mean square deviation, variance and various formulae for calculating variance, C.V. Simple numerical problems	7 hrs					
Ш	Permutation and combination theory, Binomial theorem. Algebra of Events. Simple problems. Concept of probability, Definitions of — Random experiment, Trial and Events, Exhaustive, Favourable, Equally likely event, Mutually exclusive event, Independent event & complementary events simple numerical problems	8 hrs					
IV	Classical and Statistical Probability with its limits, simple numerical problems on probability, Sample space, discrete sample space. Axiomatic probability, simple theorems on probability with additive and multiplicative law of probability. Conditional probability, Independent events. Simple numerical problems.	7 hrs					

- 1.Goon A.M., Gupta,M.K .and Dasgupta,B .(1983). Fundamentals of Statistics, Vol.1. 6th Revised Edition, The World Press Pvt. Ltd.,Calcutta.
- 2. Gupta S. C. and Kapoor, V. K. (1983). Fundamentals of Mathematical Statistics. 8th Edition, Sultan Chand and Sons Publishers,NewDelhi.
- 3. Gupta S. C. and Kapoor, V. K. (1997) .Fundamentals of Applied Statistics, 3rd Edition, Sultan Chand and Sons Publishers, New Delhi.
- 4. Heumann C., Schomaker, M., Shalabh (2016). Introduction to Statistics and Data Analysis. 1st Edition, Springer, Germany.

Vertical	Vertical	TypeofCorse	Course	Course	Credits	Workload	Max
No.	Name		Code	name		Perweek	Marks
d	SEC	Lab/Practical-	13201P3	Skill	02	04	25
		3		based			
				Practicals			
				through			
				MS Excel			

Course	At the end of the course students are able to							
Outcomes	1. Calculate and describe data through measures of central							
	tendency and dispersion.							
	2. Compute the variability between series through their measures.							
	3. Understand basic concept of probability							
	4. Interpret the utilization of measures of central tendency and d	ispersion						
	to compare group results.							
Units	Contents	Workload						
		Allotted						
I	Advanced problems to be performed through MS Excel 1. Calculation of arithmetic mean, median and mode for	4 hrs/week						
	grouped and ungrouped frequency distributions.							
	2. Establish the relation between various measures through graphs							
	3. Calculations of partition values as quartiles , deciles and percentiles.							
	4. Calculation of range, mean deviation and quartile							
	deviation with its coefficients.							
	5. Calculation of standard deviation and coefficient of variation for grouped and ungrouped data.							
	6. Problems on calculations of moments (up to third order)							
	7. Computation of Standard Deviation and							
	coefficient of Variation.							

- 1. Frag Curtis (2013). Step by Step Microsoft Excel 2013, MSPress.
- 2. Frye Curtis D. (2007). Step by step Microsoft Office Excel 2007, Microsoft Press.
- 3. John Walkenbach (2013). 101 Excel 2013 Tips, Tricks and Times evers, Wiley.
- 4. Kumar Bittu (2013). Microsoft Office 2010, V & S Publishers.
- 5. Salkind Neil J. and Frey Bruce B. (2021). Statistics for people who (Think They) Hate Statistics, Using MS-Excel, Sage Publications.
- 6. Sanjay Saxena (2007). M S Office 2000 for everyone, Vikas Publishing House.

Vertical	Vertical	Typeof	Course	Course	Credits	Workload	Max
No.	Name	Corse	Code	name		Perweek	Marks
e	IKS	Theory-	13201IKS	IKS	2	2	30
	Generic	-		Generic			
				Statistics			

Course	1. To understand the brief history of statistics	
Objectives	2. To know the importance of statistics in	
Objectives	government organizations	
	3. To understand the basic knowledge of statistics	
	which will be useful for the competitive	
	examination	
C	4. To improve the statistical reasoning of ability	
Course	Students will be able to-	
Outcomes	1. Student will able to understand the brief history of	
	statistics of India pre independence and after	
	independence	
	2. Student improve their knowledge about application of	
	statistics in different government organization	
	3. Student will able to understand the knowledge of vedic	
	mathematics	
	4. Statistical reasoning of student will get improved through	
	the understanding.	
Units	Contents	Workload
		Allotted
Ι	Evolution of statistics in India: Importance of Statistics in ancient	8 hrs
	India, Brief history statistical system in ancient India, Statistical system	
	in pre independence period, Statistical system after independence,	
	Present statistical system in India, Central statistical Organization	
	(CSO), National Sample Survey Organization, Indian Institute of	
	Population Science, International Institute of Population Science	

II	Statistics in Government Organizations: Use of Statistics in central and state government i.e In five year plan, agricultural development, health program, socio economic development of India, Industrial development, family welfare. Statistics in Indian Research Institute	7 Hrs
III	Indian Logic: Role of statistics in understanding Artificial Intelligence, Knowledge of data evaluation, Relevance of statistical methodology in the context of AI development, AI concerning methodological development, planning and designing of study, Assessment of data quality and data collection, Integration of statistical aspect in to AI teaching	8 Hrs
IV	Statistical reasoning : Analytical evidence and empirical evidence, Designing research, Develop an understanding of data using graph in statistics, Statistical tools used in the scientific methods, Statistical reasoning process in data	7 Hrs

- 1] J. K. Ghosh, P Maiti, T. J. Rao, B. K. Sinha(1999): Evolutionary statistics in India International Statistical Review, 67, 1, 13-34.
- **2]** Karr A. F, Sanil A. P, Banks D. L (2006): Data Quality: A Statistical Perspective Stat methodol 3(2),137 173.
- 3] Miller T (2019): Explanation in Artificial Intelligence: In sight from the social sciences Artif Intell 267, 1-38
- 4] Ganeri, J. (2003). Ancient Indian Logic As A Theory Of Case-Based Reasoning , Journal of Indian Philosophy, 31(1), 33-45.
- 5] Joan Garfield (2017): The challenge of developing statistical reasoning Journal of statistical education volume 10 issue 3.

Major / Minor STATISTICS B.Sc. FIRST YEAR SEMESTER-II

Vertical	Vertical	Typeof	Course	Cours	Credit	Workload	Max
No.	Name	Corse	Code	ename	S	Perweek	Marks
b	Minor/	Theory-	1320202	Probability	02	02	30
	Major	2		Theory			

Course Objectives 1. The objective of the course is to understand the concept of probability. 2. Understand the concept of random variables in the real life situation 3. The concepts of bivariate probability distributions with its applications in statistics can be easily understood. Course Outcomes 1. Understand the basic concepts of random experiment, random variable, probability. 2. Use concept of probability in real life situations. 3. Compute probability of real-life events. 4. Identify the nature of data using moments. 5. Check the dependency of events using probability or conditional probability. Units Contents Workload Allotted I Permutation and combination theory, Binomial theorem. Algebra of Events. Concept of probability, Definitions of—Random experiment, Trial and Events, Exhaustive, Favorable, Equally likely event, Mutually exclusive event, Independent event & complementary events. Classical and Statistical Probability with its limits, simple numerical problems on probability. Sample space, discrete sample space. Axiomatic probability, simple theorems on probability with additive and multiplicative law nof probability. Conditional probability, Independent events. II Concept of random variable & its illustration by examples.
3. The concepts of bivariate probability distributions with its applications in statistics can be easily understood. Course Outcomes 1. Understand the basic concepts of random experiment, random variable, probability. 2. Use concept of probability in real life situations. 3. Compute probability of real-life events. 4. Identify the nature of data using moments. 5. Check the dependency of events using probability or conditional probability. Units Contents Workload Allotted I Permutation and combination theory, Binomial theorem. Algebra of Events. Concept of probability, Definitions of— Random experiment, Trial and Events, Exhaustive, Favorable, Equally likely event, Mutually exclusive event, Independent event & complementary events. Classical and Statistical Probability with its limits, simple numerical problems on probability, simple theorems on probability with additive and multiplicative law nof probability.Conditional probability,Independentevents.
Statistics can be easily understood. Course Outcomes At the end of the course students are able to understand 1. Understand the basic concepts of random experiment, random variable, probability. 2. Use concept of probability in real life situations. 3. Compute probability of real-life events. 4. Identify the nature of data using moments. 5. Check the dependency of events using probability or conditional probability. Units Contents Workload Allotted I Permutation and combination theory, Binomial theorem. Algebra of Events. Concept of probability, Definitions of— Random experiment, Trial and Events, Exhaustive, Favorable, Equally likely event, Mutually exclusive event, Independent event & complementary events. Classical and Statistical Probability with its limits, simple numerical problems on probability. Sample space, discrete sample space. Axiomatic probability, simple theorems on probability with additive and multiplicative law nof probability.Conditional probability,Independentevents.
Course Outcomes At the end of the course students are able to understand 1. Understand the basic concepts of random experiment, random variable, probability. 2. Use concept of probability in real life situations. 3. Compute probability of real-life events. 4. Identify the nature of data using moments. 5. Check the dependency of events using probability or conditional probability. Units Contents Workload Allotted I Permutation and combination theory, Binomial theorem. Algebra of Events. Concept of probability, Definitions of— Random experiment, Trial and Events, Exhaustive, Favorable, Equally likely event, Mutually exclusive event, Independent event & complementary events. Classical and Statistical Probability with its limits, simple numerical problems on probability. Sample space, discrete sample space. Axiomatic probability, simple theorems on probability with additive and multiplicative law nof probability. Conditional probability, Independent events.
Course Outcomes At the end of the course students are able to understand 1. Understand the basic concepts of random experiment, random variable, probability. 2. Use concept of probability in real life situations. 3. Compute probability of real-life events. 4. Identify the nature of data using moments. 5. Check the dependency of events using probability or conditional probability. Units Contents Workload Allotted I Permutation and combination theory, Binomial theorem. Algebra of Events. Concept of probability, Definitions of— Random experiment, Trial and Events, Exhaustive, Favorable, Equally likely event, Mutually exclusive event, Independent event & complementary events. Classical and Statistical Probability with its limits, simple numerical problems on probability. Sample space, discrete sample space. Axiomatic probability, simple theorems on probability with additive and multiplicative law nof probability. Conditional probability, Independent events.
1. Understand the basic concepts of random experiment, random variable, probability. 2. Use concept of probability in real life situations. 3. Compute probability of real-life events. 4. Identify the nature of data using moments. 5. Check the dependency of events using probability or conditional probability. Units Contents Workload Allotted I Permutation and combination theory, Binomial theorem. Algebra of Events. Concept of probability, Definitions of— Random experiment, Trial and Events, Exhaustive, Favorable, Equally likely event, Mutually exclusive event, Independent event & complementary events. Classical and Statistical Probability with its limits, simple numerical problems on probability, Sample space, discrete sample space. Axiomatic probability, simple theorems on probability with additive and multiplicative law nof probability.Conditional probability,Independentevents.
variable, probability. 2. Use concept of probability in real life situations. 3. Compute probability of real-life events. 4. Identify the nature of data using moments. 5. Check the dependency of events using probability or conditional probability. Units Contents Workload Allotted I Permutation and combination theory, Binomial theorem. Algebra of Events. Concept of probability, Definitions of— Random experiment, Trial and Events, Exhaustive, Favorable, Equally likely event, Mutually exclusive event, Independent event & complementary events. Classical and Statistical Probability with its limits, simple numerical problems on probability. Sample space, discrete sample space. Axiomatic probability, simple theorems on probability with additive and multiplicative law nof probability.Conditional probability, Independent events.
3. Compute probability of real-life events. 4. Identify the nature of data using moments. 5. Check the dependency of events using probability or conditional probability. Units Contents Workload Allotted I Permutation and combination theory, Binomial theorem. Algebra of Events. Concept of probability, Definitions of— Random experiment, Trial and Events, Exhaustive, Favorable, Equally likely event, Mutually exclusive event, Independent event & complementary events. Classical and Statistical Probability with its limits, simple numerical problems on probability. Sample space, discrete sample space. Axiomatic probability, simple theorems on probability with additive and multiplicative law nof probability.Conditional probability,Independentevents.
3. Compute probability of real-life events. 4. Identify the nature of data using moments. 5. Check the dependency of events using probability or conditional probability. Units Contents Workload Allotted I Permutation and combination theory, Binomial theorem. Algebra of Events. Concept of probability, Definitions of— Random experiment, Trial and Events, Exhaustive, Favorable, Equally likely event, Mutually exclusive event, Independent event & complementary events. Classical and Statistical Probability with its limits, simple numerical problems on probability. Sample space, discrete sample space. Axiomatic probability, simple theorems on probability with additive and multiplicative law nof probability.Conditional probability,Independentevents.
4. Identify the nature of data using moments. 5. Check the dependency of events using probability or conditional probability. Units Contents Workload Allotted I Permutation and combination theory, Binomial theorem. Algebra of Events. Concept of probability, Definitions of— Random experiment, Trial and Events, Exhaustive, Favorable, Equally likely event, Mutually exclusive event, Independent event & complementary events. Classical and Statistical Probability with its limits, simple numerical problems on probability. Sample space, discrete sample space. Axiomatic probability, simple theorems on probability with additive and multiplicative law nof probability.Conditional probability,Independentevents.
Units Contents Workload Allotted I Permutation and combination theory, Binomial theorem. Algebra of Events. Concept of probability, Definitions of— Random experiment, Trial and Events, Exhaustive, Favorable, Equally likely event, Mutually exclusive event, Independent event & complementary events. Classical and Statistical Probability with its limits, simple numerical problems on probability, Sample space, discrete sample space. Axiomatic probability, simple theorems on probability with additive and multiplicative law nof probability.Conditional probability,Independentevents.
Units Contents Workload Allotted I Permutation and combination theory, Binomial theorem. Algebra of Events. Concept of probability, Definitions of— Random experiment, Trial and Events, Exhaustive, Favorable, Equally likely event, Mutually exclusive event, Independent event & complementary events. Classical and Statistical Probability with its limits, simple numerical problems on probability. Sample space, discrete sample space. Axiomatic probability, simple theorems on probability with additive and multiplicative law nof probability.Conditional probability, Independent events.
I Permutation and combination theory, Binomial theorem. Algebra of Events. Concept of probability, Definitions of— Random experiment, Trial and Events, Exhaustive, Favorable, Equally likely event, Mutually exclusive event, Independent event & complementary events. Classical and Statistical Probability with its limits, simple numerical problems on probability. Sample space, discrete sample space. Axiomatic probability, simple theorems on probability with additive and multiplicative law nof probability. Conditional probability, Independent events.
I Permutation and combination theory, Binomial theorem. Algebra of Events. Concept of probability, Definitions of— Random experiment, Trial and Events, Exhaustive, Favorable, Equally likely event, Mutually exclusive event, Independent event & complementary events. Classical and Statistical Probability with its limits, simple numerical problems on probability. Sample space, discrete sample space. Axiomatic probability, simple theorems on probability with additive and multiplicative law nof probability. Conditional probability, Independent events.
I Permutation and combination theory, Binomial theorem. Algebra of Events. Concept of probability, Definitions of— Random experiment, Trial and Events, Exhaustive, Favorable, Equally likely event, Mutually exclusive event, Independent event & complementary events. Classical and Statistical Probability with its limits, simple numerical problems on probability. Sample space, discrete sample space. Axiomatic probability, simple theorems on probability with additive and multiplicative law nof probability. Conditional probability, Independent events.
of Events. Concept of probability, Definitions of— Random experiment, Trial and Events, Exhaustive, Favorable, Equally likely event, Mutually exclusive event, Independent event & complementary events. Classical and Statistical Probability with its limits, simple numerical problems on probability. Sample space, discrete sample space. Axiomatic probability, simple theorems on probability with additive and multiplicative law nof probability. Conditional probability, Independent events.
experiment, Trial and Events, Exhaustive, Favorable, Equally likely event, Mutually exclusive event, Independent event & complementary events. Classical and Statistical Probability with its limits, simple numerical problems on probability. Sample space, discrete sample space. Axiomatic probability, simple theorems on probability with additive and multiplicative law nof probability. Conditional probability, Independent events.
likely event, Mutually exclusive event, Independent event & complementary events. Classical and Statistical Probability with its limits, simple numerical problems on probability. Sample space, discrete sample space. Axiomatic probability, simple theorems on probability with additive and multiplicative law nof probability. Conditional probability, Independent events.
complementary events. Classical and Statistical Probability with its limits, simple numerical problems on probability. Sample space, discrete sample space. Axiomatic probability, simple theorems on probability with additive and multiplicative law nof probability. Conditional probability, Independent events.
space, discrete sample space. Axiomatic probability, simple theorems on probability with additive and multiplicative law nof probability. Conditional probability, Independent events.
theorems on probability with additive and multiplicative law nof probability.Conditional probability,Independentevents.
probability.Conditional probability,Independentevents.
II Concept of random variable & its illustration by avamples 7 has
II Concept of random variable & its illustration by examples. 7 hrs
Discrete and Continuous random variables. Probability
distribution of a r.v., discrete and continuous distribution
function, properties of distribution functions, simple numerical
Problems on probability distribution.
III Mathematics expectations and its properties. Numerical problems 8 hrs
on expectations. Expectation of discrete and continuous r.v.,
expectation of a linear combination of r.v., Addition and
multiplication theorem of expectation variance of a r.v.
covariance and its properties. Cumulant generating function,
moment generating function, relation between c.g.f and m.g.f.,
properties of m.g.f. Properties of Cumulant generating function.
IV Bivariate probability distributions (discrete and continuous), 7 hrs
IV Bivariate probability distributions (discrete and continuous), 7 hrs joint, marginal and conditional probability mass functions.
IV Bivariate probability distributions (discrete and continuous), 7 hrs joint, marginal and conditional probability mass functions. Marginal distribution functions, joint density function, marginal
IV Bivariate probability distributions (discrete and continuous), 7 hrs joint, marginal and conditional probability mass functions.

- 1. Agarwal B.L. (2003). Programmed Statistics, 2nd edition ,New Age International Publishers, NewDelhi.
- 2. Brase C.H., Brace C.P (2016). Understandable Statistics, Concepts and Methods, 12thEdition, Cengage Learning.
- 3. Freedman D., Pisani R., Purves R. (2007). Statistics, 4th Edition, W. W. Norton and Company.
- 4. Gupta S. C. and Kapoor, V. K. (1983). Fundamentals of Mathematical Statistics, 8thEdition, Sultan Chand and Sons Publishers, NewDelhi.
- Hoel P .G. (1971). Introduction to Mathematical Statistics, John Wiley and Sons, NewYork.
- 6. Hogg R. V. and Craig R. G. (1989). Introduction to Mathematical Statistics, Mac Millan Publishing Co., NewYork.
- 7. Mayer P. (1972). Introductory Probability and Statistical Applications, Addison Wesley Publishing Co., London.
- 8. Mood A. M., Graybill, F. A. and Boes D. C. (1974). Introduction the Theory of Statistics, 3rd Edition, Mc Graw Hill Book Company.
- 9. Moore D. S., Notz W. I., Fligner M. A. (2013). The Basic Practice of Statistics, 6th Edition, RuthBaruth.
- 10. Rao B L S Prakasa (2008). First Course in Probability and Statistics, New Age International Publishers, NewDelhi
- 11. Rohatgi V. K. and Saleh, A. K. Md. E. (2015). An Introduction to Probability and Statistics, John Wiley & Sons, Inc., Canada.
- 12. Ross S. (2002). A First Course in Probability, 6th Edition, Pearson Education, Inc. & Dorling Kindersley Publishing,Inc.
- 13. Utts J. M., Heckard R. F. (2010). Mind On Statistics, 4thEdition, Richard Stratton Publisher.
- 14. Freund J. E. (1977). Modern Elementary Statistics. 4th Edition, Prentice Hall of India Private Limited, New Delhi.
- 15. Goon A. M., Gupta ,M. K. and Dasgupta ,B. (1983). Fundamentals of Statistics, Vol.1, 6th Revised Edition, The World Press Pvt. Ltd., Calcutta.
- 16. Gupta S. C. and Kapoor ,V. K. (1983). Fundamentals of Mathematical Statistics, 8th Edition, Sultan Chand and Sons Publishers ,New Delhi.
- 17. Gupta S. P. (2014) Statistical Methods, 43rd Edition, Sultan Chandand Sons,

- 23, Daryaganj, New Delhi 110002.
- 18. Montgomery D. C, Peck, E. A. ,Vining, G. G. (2006) .Introduction to Linear Regression Analysis, John Wiley and Sons
- 19. Moore D. S., Notz W. I., Fligner M. A. (2013). The Basic Practice of Statistics, 6th Edition, Ruth Baruth.

Vertical	Vertical	Type of	Course	Course	Credits	Workload	Max
No.	Name	Corse	Code	Name		Perweek	Marks
a	Major /	Practical-	13202P2	Practical	02	04	25
	Minor	2		based			
				on			
				1320202			

Course Outcomes	 At the end of the course students are able to Use various types of probabilities Prepare the probability distribution. Analyze data pertaining to discrete variables and to interpret the Compute various probability distribution. 					
Units	Contents	Worklo Allotted				
	 Evaluation of simple probabilities Evaluation of probabilities using addition theorem-1 Evaluation of probabilities using addition theorem-2 Evaluation of probabilities using multiplication theorem1 Evaluation of probabilities using multiplication theorem2 Problems on conditional probability. Determination of probability distribution of discrete random variables. Determination of mathematical expectation and variance for discrete r.v. Determination of mathematical expectation and variance for continuous r.v. Computation of Marginal , Joint and conditional probability functions for descrete random variable Computation of Marginal , Joint and conditional probability functions for continuous random variable 	4 hrs week	per			

Vertical	Vertical	Type of	Course	Course	Credit	Workload	Max
No.	Name	Corse	Code	name	S	Perweek	Marks
С	Generic/	Theory-3	13202G3	Business	02	02	30
	Open			Analytics I			
	elective			(Useful for			
				marketing			
				strategies)			

Course Objectives	This course is designed to understand the basic knowledge used in busin	ness analytics.
	Concepts used in measuring the relationship between two variables.	
Course Outcomes	At the end of syllabus the student is able to do	
	1.Understand the concept of relationships between two variables.	
	2.Understand the concept used in the business analytics	
	3.Testing of association between two variables	
Units	Contents	Workload Allotted
I	Concept of correlation, scatter diagram and positive and negative correlation. Karl Pearson's coefficient of correlation, properties of Correlation coefficient, coefficient of determination. Simple problems	8 hrs
II	Rank correlation—Spearman's rank correlation coefficient. Intraclass Correlation coefficient. Simple problems based on Spearman rank correlation coefficient.	7 hrs
III	Index numbers: Introduction of Index Numbers, Definition and meaning, Problems in the construction of index numbers, Simple and weighted price index numbers, Lapeyres price index numbers, Paasches price index numbers, Consumer price index number	8 hrs
IV	Definition of attribute, notations, classes and class frequencies, order of class and class frequencies. Consistency of data, conditions for consistency of data, simple numerical problems. Independence of attributes, criteria for independence. Association of attributes, Yule's coefficient of association, coefficient of colligation, simple problems	7 hrs

- 1. Brase C. H., Brace C.P (2016). Understandable Statistics, Concepts and Methods, 12th Edition, Cengage Learning.
- 2.Freund J. E. (1977).Modern Elementary Statistics. 4th Edition, Prentice Hall of India Private Limited, NewDelhi.
- 3.Goon A. M. ,Gupta , M. K. and Dasgupta, B. (1983). Fundamentals of Statistics, Vol.1, 6^{th} Revised Edition, The World Press Pvt. Ltd. ,Calcutta.
- 4.Gupta S. C. and Kapoor, V. K. (1983) . Fundamentals of Mathematical Statistics $,8^{th}$ Edition, Sultan Chand and Sons Publishers, New Delhi.

5.Gupta S. P. (2014) Statistical Methods, 43rd Edition, Sultan Chandand Sons, 23, Daryaganj, New Delhi 110002

Vertical No.	Vertical Name	Type of Corse	Course Code	Course name	Credits	Workload Perweek	Max Marks
С	Generic/ Open elective	Theory-4	13202G4	Business Analytics II (Useful for marketing strategies	02	02	30
				and forecasting)			

Course Objectives	This course is designed to familiar with the concept of structured sample surveys. Also understanding the concept used analytics which will be useful for marketing strategies understand student.	in business				
Course Outcomes	At the end of this course, students are able to					
	1. Identify the most suited sampling method for an intended survey					
	 Understand the concept used in the projection of data. Create structured and organized survey forms. Acquiring the knowledge regarding market forecasting and strategies. 					
Units	Contents	Workload Allotted				
I	Questionnaire: Characteristics of a good questionnaire, Designing questionnaires for surveys (i.e. survey forms) Processing Survey Data, Types of questionnaires					
II	Concept of Statistical Population, Concept of population surveys, sample surveys, scope of the surveys, limitations of survey. Concept of Sampling.					
III	Design of sample surveys: Sample Design, sampling and non sampling errors, sample survey VS Census Survey, Types of sampling Design: Non probability sampling, Probability sampling, Simple random Sampling with and without replacement (only concept)					
IV	Time series analysis: Meaning of Time Series, Various components of a time series, Examples of time series in real life. Additive and Multiplicative methods for analysis of a time series. Methods of estimating trend: (i) Freehand or Graphical method (ii) Method of semi-averages (iii) Method of moving averages					

- 1. Brase C. H. ,Brace C. P (2016). Understandable Statistics, Concepts and Methods, 12th Edition, Cengage Learning.
- 2. Goon A. M., Gupta, M. K. and Dasgupta, B. (1983). Fundamentals of Statistics, Vol.2, 6th Revised Edition, The World Press Pvt. Ltd., Calcutta.
- 3. Gupta S . C .and Kapoor, V. K. (1983). Fundamentals of applied Statistics, 8th Edition, Sultan Chand and Sons Publishers,NewDelhi.
 - 4.Gupta S. P. (2014) Statistical Methods, 43rd Edition, Sultan Chand and Sons, 23, Daryaganj, New Delhi 110002

Vertical	Vertical	TypeofCorse	Course	Coursename	Credits	Worklo	Max
No.	Name		Code			adPerw	Mar
						eek	ks
d	VSC	Lab/Practical-6	13202P6	Basic analysis	02	04	50 Int.
				skill through			
				MS Excel			

Course	At the end of the course student is able to do					
Outcomes	1. Understanding with some fundamental concepts, which play a role in understanding and visualizing real world data.					
	role in understanding and visualizing real world data.					
	2. Get familiar with the spread sheets of MS Excel					
	3. Understand the basic function of analytics through MS Excel					
Units	Contents	Wo	orklo	ad		
		All	lotted	d		
	Following practicals to be performed through MS Excel	4	hrs	per		
		we	ek	_		
	1. Problems on simple Correlation Coefficient.					
	2. Problems on Rank Correlation by Spearman's and Kendall's formulae.					
	3. Fitting of straight line					
	4. Fitting of second degree parabola by least square					
	method.					
	5. Fitting of exponential curve.					
	6. Problems on regression of two variables.					
	7. Testing association of attributes by all four methods.					
	8. Measurement of trend by semi average method					
	9. Measurement of trend by moving average method					

Ī	Vertical	Vertical	TypeofCorse	Course	Coursena	Credi	Workload	Max
	No.	Name		Code	me	ts	Perweek	Marks
Ī	d	SEC	Lab/Practical-7	13202P7	Descriptive	02	04	50 Int.
					statistics			
L					Through R			

Course Outcomes	At the end of the course student is able to do 1. Get acquainted with the concept of R software 2. Understanding various analysis skill through the use of R 3. Understanding fitting of discrete distributions	
Units	Contents	Workload Allotted
	Following practical to be performed through R programming and MS Excel 1. Calculation of mean, variance, coefficient of Skewness and Kurtosis for Binomial distribution. 2. Calculation of mean, variance, coefficient of Skewness and Kurtosis for Poisson distribution. 3. Calculation of mean, variance, coefficient of Skewness and Kurtosis for Geometric distribution. 4. Fitting of Binomial distribution. 5. Fitting of Poisson distribution. 6. Fitting of Normal Distribution. 7. Problems on Area property of normal distribution. 8. Basic tools for creating power point presentation.	4 hrs per week